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ABSTRACT

In this work we study heat and mass transport, fluid motion and solid/liquid

phase change in the process of steady Bridgman growth of Pb.sSn.2Te

(LTT) in an axially-imposed uniform magnetic field under terrestrial and

microgravity conditions. In particular, this research is concerned with the

interrelationships among segregation, buoyancy-driven convection and

magnetic damping in the LTT melt. The main objectives are to provide

a quantitative understanding of the complex transport phenomena dur-

ing solidification of the non-dilute binary of LTT, to provide estimates of

the strength of magnetic field required to achieve the desired diffusion-

dominated growth, and to assess the role of magnetic damping for space

and earth based control of the buoyancy-induced convection. The prob-

lem was solved by using FIDAPt and numerical results for both vertical

and horizontal growth configurations with respect to the acceleration of

gravity vector are presented.

t NASA does not endorse commercial products, f)etails about the products named in this paper were
included for completeness and accuracy. No endorsement or criticism of these products by NASA
should be assumed.
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1. INTRODUCTION

Direct, quantitative analysis of convection and solute segregation in molten metals

and semiconductors is particularly difficult. These materials are generally opaque, which

hinders non-intrusive measurements. Thus, most studies are limited to indirect measure-

ment techniques. The role of numerical modeling then becomes crucial in analyzing the

system. A better understanding of the complex relationship among thermal conditions,

natural convection, growth morphology, and macrosegregation in solidification process can

be achieved through synergistic theoretical [1,2] and numerical analysis [3,4] in combina-

tion with various experiments on earth and in space. In numerical modeling, the geometry,

furnace temperature settings, materials and other parameters can be easily altered and the

impact of the changes in design parameters can then be examined in a more efficient and

economic way. The full-scale modeling combined with the scaling and asymptotic anal-

ysis provides a convenient and useful tool for the furnace design and growth condition

optimization.

Directional solidification, such as Bridgman growth, has been widely used in space

experiments and in many industrial processes for electronic materials. As one of the most

fundamental arrangements, Bridgman growth is of significant technological importance,

both from experimental and numerical points of view. Therefore, in this paper we shall

focus on the modeling of Bridgman growth. However, once validated, the model and numer-

ical techniques developed in this work are generally applicable to a number of solidification

processes.

During crystal growth, temperature and concentration gradients often induce natural

convection. It has been shown both experimentally and numerically that the flow mode,

the shape of the solid/liquid interface and the thermal and solute profiles in a solidifying

liquid are greatly affected by natural convection. The variation of convective strength has

a direct impact on solute distribution (segregation). The distortion of the interface, in

turn, affects convection. Thus a complex interaction exists among convection, thermal

and solutal gradients and interface shape.

In the vertical Bridgman growth, the furnace is assumed to be aligned perfectly parallel

to gravity vector. This arrangement results in a great simplification for numerical treat-

ment. In this case, the flow, thermal and solutal fields may be taken to be axi-symmetric,

which is valid for laminar flow and axi-symmetric boundary conditions. When convection

gains enough strength, the flow on the axi-symmetric plane forms one or multiple torus-like
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cells [5], depending on the local thermal and solutal gradients. At 1-g level, the magnitude

of the convective flow may be very high, resulting in time-dependent or even turbulent

flows requiring transient 3-D analysis [6,7].

Another fundamental Bridgman arrangement is the horizontal configuration in which

the furnace axis is aligned perpendicular to the gravity vector. As shown by Arnold

et al [8], the flow mode during 1-g horizontal growth is the so-called shallow cavity flow

with a complex 3-D structure. During shuttle flight in space, however, the magnitude

and orientation of the gravity vector are generally a priori unknown functions of time

(unsteady). Consequently, the flow structure and segregation fields in the solidifying liquid

during space growth are still theoretically unknown.

In the solidification process, solute concentration at the interface is affected by the

removal rate of excess solute rejected at the moving interface. Under ideal conditions (no

convection), the rejected solute is transported by diffusion only. In reality, however, the

transport of excess solute to and from the interface is greatly affected by additional factors

such as the natural convection. In this study we consider buoyancy forces induced by both

thermal expansion and composional differences. For PbSnTe, it is important to note that

the magnitude of density variations due to thermal and solute gradients are globally of the

same order and a positive change of AT and AC will reduce the density in the buoyancy

term in the momentum equation. The segregation coefficient k < 1 and Psolute < Psolvent

imply that lighter solute is rejected at the interface. Consequently, the double-diffusive

convection is solutally unstable in a classical vertical growth system.

The conventional segregation quantity provided by experimental measurement is the

effective segregation coefficient defined as the ratio of the concentration in the crystal to

that in the bulk of the melt. Due to the existence of a solute boundary layer adjacent to

the solid/liquid interface during the solidification process, this quantity differs from the

interface segregation coefficient, which is calculated by the ratio of solute concentration in

the grown crystal to that at the liquid side of the interface. The difference between these

two quantities will depend on the structure and strength of the flow in the melt as well

as on the growth rate. When flow is dominated by natural convection, the relationship

between these quantities and the complex interactions among the driving forces can be

obtained only from a full numerical simulation [9].

The idea of using a magnetic field to damp melt turbulence and thereby improve mi-

croscopic homogeneity of the crystal was introduced in 1966 independently by Utech and
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Flemings [10,11] and by Chedzey and Hurle [12]. It was shown in their work that a trans-

verse magnetic field damped temperature fluctuations in the horizontal directional solidifi-

cation of tin and InSb. In 1981 workers at Sony in Japan [13] developed a growth process

using a static transverse magnetic field generated by an external electromagnet. Since then

there has been considerable amount of research efforts pertaining to the magnetic damping

in the growth of silicon, the llI-V compound semiconductor, gallium arsenide, and indium

phosphide, etc. [14]. Motivation for the use of an applied magnetic field has been widened

subsequently. In addition to damping out the chaotic and time-periodic convection in the

melt and consequently reducing fluctuations in solute concentration, magnetic field can

also be used to control the growth conditions at various stages in the growth process. For

instance, the alteration of the laterally averaged axial concentration of oxygen is one of the

primary advaxitages of using magnetic damping in Czochralski growth of silicon [15,16].

There are several different configurations of the applied magnetic field reported in the

literature. The axial and transverse fields are perhaps the simplest configurations among

them. In addition, the concept of a configured field [17,18] was also developed to tailor

the field configuration to the flows in the melt so that only the harmful flows are damped

while the beneficial flow patterns are still retained. One such configured field is the cusped

field formed with a pair of Helmholtz coils operated in opposed-current mode. The most

extensive work to date, however, has been on the axial magnetic field.

The application of steady-state magnetic fields offers a practical means of suppressing

natural convection due to both the steady and unsteady changes in the residual accelera-

tion. When an axial magnetic field is imposed, its effect on the convection in the melt is to

interfere with the radial velocity component. As shown by asymptotic analysis [46,19], the

magnitude of the radial velocity decreases proportionally to the square of B, the strength

of the magnetic field. When B is sufficiently intense, an almost uniaxial flow, and hence

the desired diffusion-dominant growth condition, may be obtained.

In the literature, previous studies on vertical Bridgman growth with magnetic damping

include both experimental and numerical efforts. K.M. Kim [20] grew InSb with a magnetic

field greater than 1.7 Kilo-Gauss (KG) and obtained a striation flee boule. The most

obvious effect of an increasing magnetic field was the reduction and then the elimination of

temperature fluctuations in the melt. Sen et al [21] found that a 2 KG transverse magnetic

field was suflficient to statistically reduce the number of area defects in InGaSb, but was

insufficient to produce an observable effect on the composition distribution. Matthiesen
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et al. [22] demonstrated melt stabilization in doped germanium when grown in a 30 KG

axial magnetic field. They observed a transition from convection dominated to diffusion

controlled growth, for the dopant atoms, via the application of the magnetic field. Su,

Lehoczky and Szofran [23] grew HgCdTe and HgZnTe in a 5 KG transverse field. Their

results show a strong coupling between convection and the magnetic field but they were

unable to fully suppress convection.

In the pioneering numerical magnetic interaction studies for vertical Bridgman growth

[19], D.H. Kim et al performed a finite element analysis for the growth of dilute Ga doped

Ge. Their study shows that the compositional radial non-uniformity is greatest for an

intermediate field strength. Stronger fields suppress convective flow completely and lead

to uniform solute segregation across the crystal and to diffusion-controlled axial segrega-

tion. They calculated that the effect of the magnetic field was very similar to reducing

gravity for vertical growth. Motakef [24] has analyzed the growth of Ge, GaAs and CdTe

in both low gravity and magnetic fields. He computed the ranges of ampoule sizes and

gravity level or field strength where these single component materials could be grown under

diffusion control. In a more recent work, Prescott and Incropera [25] simulated magnet-

ically damped convection in solidifying Pb.10Sn alloy. Their results show that magnetic

damping significantly affects thermally driven flows during early stage of solidification.

However, interdendritic flows and macrosegregation patterns are not significantly altered

by moderate magnetic fields. Their scaling analysis suggests that extremely strong fields

would be required at 1-g to effectively dampen convection patterns that contribute to

macrosegregation. Simulations in their work were based on a continuum model for den-

dritic solidification systems [26]. In [27], their work was extended to account for turbulent

flow and to application of a time varying magnetic field which augments thermal buoy-

ancy forces in the melt while opposing solutal buoyancy forces in the mushy zone. Due to

the complexity of the problem and the large number of parameters involved, it is difficult

to obtain the whole picture of the physical phenomena from numerical simulation alone.

Hjellming and Walker [47-49] have therefore used asymptotic analysis to deduce the nature

of the boundary layers formed.

Among the previous efforts cited above, only two studies [21,23] involve the melt stabi-

lization of a non-dilute multicomponent system. One important consideration for analysis

of non-dilute alloys is the need to include the density variation due to compositional dif-

ferences. For non-dilute alloys, our results (and the results in [5]) show that the effect of
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the compositional derived density differences is important and should not be neglected.

Furthermore, the non-trivial interaction between the thermal and the solutal fields and

their coupled effects on the flow field in the melt through the buoyancy force term intri-

cately depend on the magnitude and orientation of the gravity vector. Therefore we cannot

decipher the interactive thermal and solutal effects a priori by order-of-magnitude analysis

of the non-dimensional groups alone.

In this study, we extend previous works in this area to non-dilute multicomponent

systems and to the combined effect of magneto-hydrodynamic (MHD) and low gravity

stabilization. In particular, this research is concerned with the study of the effects of an

axial magnetic field on the Bridgman growth of Pb.sSn.2Te with convective flows induced

by both thermal and solutal buoyancy forces. To this purpose, a complete 2-D (including

axi-symmetric) finite element model (for full-coupled flow, thermal and solutal fields) has

been established. The model considers the coupled momentum, energy, and mass transport

equations with the Boussinesq approximation applied to the temperature and concentration

buoyancy terms. The influence of the magnetic field on the flow is expressed through

the Lorentz force. The temperature of the solid-melt interface is determined from the

phase diagram. The interface position is simultaneously solved using the front tracking

approach in conjunction with a deformable mesh. The furnace temperature profile is

imposed through a heat transfer boundary condition on the outer surface of the cartridge,

details of which were determined from previous experimental data. The so-called pseudo-

steady-state-model [5,19] is used to simulate the steady growth in both axial and horizontal

Bridgman configurations. The problem is solved by the commercial code FIDAP [28].

The primary objectives of this study are to provide a quantitative understanding of

the complex transport phenomena during solidification of non-dilute binarys, to furnish a

numerical tool for furnace design and growth condition optimization, to provide estimates

of the required magnetic field strength for low gravity growth, and to assess the role of

magnetic damping for space and earth control of the double-diffusive convection. These ob-

jectives will be achieved via a systematic examination of the heat and mass transport and

fluid flow phenomena using both earth and reduced gravity conditions, and by using MHD

damping at various gravity levels. As an integral part of a NASA research program, our

numerical simulation collaborates and supports both the flight and ground-based experi-

ments in an effort to bring together a complete picture of the complex physical phenomena

involved in the crystal growth process.
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In order to provide a solid theoreticalfoundation for this work, this paper will be

devoted to the modeling studies,leaving a more detailed description of the experimental

work for subsequent reports.

2. EXPERIMENTAL BACKGROUND

The experiment [29,30]modeled in this paper studies the effectof the gravitational

body force on the convective properties of the alloy compound semiconductor, PbSnTe

(LTT), with body forcesmodified by both reduced gravity and by MHD. PbSnTe is an

ideal material for this study because it was used in both a past flightexperiment and

a planned AADSF (Automated Advanced DirectionalSolidificationFurnace) experiment.

Both ofthese experiments are without magnetic field.Subsequent experiments using MHD,

including earth based and in space, will form a comprehensive set of space processing

experiments which willhelp to elucidate the gravity dependent physical phenomena for

the growth of thisclass of materials.

The bulk growth of thismaterial is interestingfrom a purely scientificpoint of view,

because the liquid isalways solutallyor thermally unstable. For the verticalgrowth, one

of the pertinent fields,eithertemperature or concentration, willbe in a stable orientation

and the other fieldwillbe in an unstable orientation.This double convective instability

cannot be made stable by simply balancing thermal and solutalexpansion with a high

temperature gradient [31].

PbSnTe isa semiconductor material with a compositional dependent energy bandgap

which isadjustable from 0 ev (_ 40% SnTe) to 6.4 ev (_ 100% PbTe). Itisa directbandgap

material hence itcan be used for both infraredlasersand detectors.The utilizationof this

and other materials in thisgeneral classisdependent on both the crystallineperfection of

the material and the compositional homogeneity.

The firstflightexperiment, without magnetic field,in this serieswas on STS 61A

in October 1985 [32]. It was shown that a high degree of convection was stillapparent

at the low growth rates used. The convective instabilitymay have been exacerbated

because the crystalaxis and the steady stateresidualaccelerationvectors were (estimated)

perpendicular. The analysis of this flightsample served as a basis of continued ground

based research and the development of the existing flightexperiment. Previous studies

show that the growth of PbSnTe is totallydominated by gravity driven convection on

earth and is stillstrongly influenced by convection in space growth. These two factsmake

PbSnTe an ideal material forstudying the effectsof MHD damping on earth and in space.
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The experiment consists of two parallel programs, the ground-based growth in the

superconductor magnetic furnace and the space growth in a magnetically damped furnace.

The ground-based experiments are conducted at MSFC where a crystal growth furnace

with a 50 KG axial magnet and another furnace with a 5 KG transverse magnet have been

developed. After growth, the samples are evaluated for compositional uniformity and defect

structure. The compositional profile is the most sensitive measure of convection intensity

during growth and is measured by a wavelength dispersive electron micro-probe. The

planned flight experiment has basically the same design as that of the AADSF experiment

but with the addition of the stabilizing magnetic field.

The typical experimental parameters, such as the ampoule dimensions, temperature

gradient, etc., are listed in Table 1. The ampoule materials are quartz and Inconel TM.

The thermophysical properties of PbSnTe can be found in refs. [29,33-36]. The phase

Diagram is given in [37]. The electrical conductivity can be found in [38]. Other material

properties are given in [39]. A typical thermal profile measured along the center of the

ampoule is shown in Fig. 1. This profile is used as the reference temperature in the heat

transfer boundary condition imposed in the modeling.

3. THEORETICAL BACKGROUND

3.1 Govcrning Equations

In this paper, we consider heat and mass transport, fluid motion and solid/liquid phase

changes in the crystal growth process. In particular, the liquid pseudo-binary mixture of

LTT is assumed to behave as a Newtonian fluid and its motion is described by the following

Navier-Stokes equation:

p0 _+u-Vu)=-Vp+V..{#(T)[Vu+(Vu)T)]} (la)

+ p0g[1 - Zt(T- To) - _(C - Co)] + a,_(u x B) x B

where u is the velocity vector, P0 is fluid density at the reference temperature To, p is

pressure, _ is viscosity, T is the temperature variable, g is the acceleration of gravity, Bt

and _c are thermal and solutal volumetric expansion coefficients. The Boussinesq model is

adopted to approximate the buoyancy force caused by density variation with both temper-

ature and concentration. A uniform magnetic field, B, is imposed in the axial direction of

the furnace. When the ampoule and crystal are moved parallel to B, the imposed magnetic

field does not cause a current in the materials. The electric field is everywhere equal to
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Table 1. Experimental Design Parameters for the Vertical BHdgman Growth

Parameter Symbol Value

Ampoule Length

Sample Radius

Ampoule Outer Radius

Thermal Gradient

Growth Velocity

Hot Zone Temperature

Cold Zone Temperature

Temperature Difference

L

R

R_

dT/dz

V9

Th

Tc

AT=Th - Tc

ii cm

0.5 cm

0.7 cm

_80°C/cm

lcm/hour

1150°C

550°C

600K

1200

1100

I000

900
_9

7OO

6O0

5OO
-10.0

i I ' I i I '

=

--P___

- .

t1(

t1(

I_ Tweak-3 Data [ _ _

I I I I I tll/tttl t _t

-5.0 0.0 5.0 10.0

Z (cm)

Figure 1. Temperature profile obtained using a quartz sample (Cal9). It was mea-

sured along the sample centerline with the furnace set to 525/575/1150/1150/1150

and the sample translated at a speed of 2 cm/hour.
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zero and the magnetic induction is not distorted by convection in the melt. Therefore the

only effect of the magnetic field is the Lorentz body force term in eqn. (1), where am is

the electrical conductivity of the melt.

The LTT liquid is assumed to be incompressible and the incompressibility condition

is given by

V.u=0. (2)

The heat transport is controlled by the balance of thermal energy

pocp _- + u- VT = V-[n(T)VT] (3a)

where cp is specific heat and _ is thermal conductivity. The solute transport is governed

by the balance of species concentration

OC

_- + u vc = v. (DYe) (4a)

where C is the concentration of impurity and D denotes the mass diffusion coefficient. On

each segment of the boundary, it is necessary to prescribe appropriate boundary conditions.

Details of the computational boundary conditions used in the modeling will be given in

section 4.

The change of phase from liquid to solid is described mathematically by the following

phase conditions

T_(S,t) = T,(S,t) = T,_ , (5a)

_lVTl . fi -- _,VT, . fi = p, AH(u, -- u,). fi, (6a)

p_(u_- u,). _ = p.(u. - u,). _, (7)

(u_- u.) × _ = 0 (8)

which need to be satisfied at the solid/liquid interface. Here subscripts, s and l, refer to

the solid and liquid region, respectively; us is the solid pulling velocity; uz is the velocity

of the interface; T,_ is the melting temperature; fi is the unit norm of the interface pointing

from the liquid to the solid; AH is the latent heat of fusion. From physical point of view,

equations (5)-(8) represent thermal equilibrium at the interface, the heat flux balance

between the phases which includes latent heat release, the mass flux balance across the

interface and the no-slip condition at the liquid side of the interface, respectively.
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In order to include the solute (species)transport in the phase change analysis it is

necessary to add two more interfaceconditions:

(9)

C,=kC_ (10)

where k is the partition coefficient. Eqn. (9) describes the mass conservation for solute

transport across the interface and eqn. (10) is actually the chemical equilibrium deter-

mined by the phase diagram. In this case the melting temperature depends on solute

concentration and condition (5a) becomes

Tt = Ts = Tin(C) = TA -{- mG (5b)

where TA is a constant and

tiT,.,., (11)m = re(C) - dC

is the rate of change of the melting temperature with respect to C. Note that the model

summarized in this section assumes a sharp solid/liquid interface and the problem will be

solved by the interface tracking approach with deformable grids.

3.2 Non-Dimensionalization

It is well known that non-dimensional formulation renders many advantages for study-

ing the physical problems. Scaling the fundamental variables with respect to their char-

acteristic values and defining dimensionless parameter groups provide a measure of the

relative importance of the various terms in the governing equations and identifies the dom-

inant physical phenomena. For nonlinear problems, non-dimensionalization can also help

ease the convergence di_culties in the nonlinear iterative solution process. For these rea-

sons, the non-dimensional formulation is also used in this work, especially for the cases

when the nonlinearity is high as well as for the parametric and asymptotic analysis.

To non-dimensionalize the momentum equation, we first choose a characteristic veloc-

ity U and a characteristic length L. Then we define the following dimensionless variables

u*-u/U, x*-x/L

p* = p/(poU2), t* = tU/L

T* = (T- To)/AT, _*(T*) = p(T)lPo

f_r = 1, _* = _o/(_AT)

(12)
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Substituting (12) into (la) and introducing the non-dimensional parameters summarized

in Table 2 leads to the following non-dimensional equation of motion

* . . , I____V,
=- V'p* + _ •{#* (T*)[V*u* + (V*u*)T]}+

Ha2..
+ _T _eg-(_T* +_cC)eg + _rrtU × eB) x eB

(lb)

in which eg and eB are unit vectors of gravity and magnetic field.

Dimensionless Number Definition Range of Value

Reynolds No.

Grashof No.

Hartman No.

Thermal Peclet No.

Prandtl No.

Thermal Rayleigh No.

Stefan No.

Schmidt No.

Solute Peclet No.

Solute Rayleigh No.

Re = poUL/#o

Gr = p_ISTATgL 3//_

Ha- BLv/'_/#o

PeT = UL/ao

Pr = I_oC_,/ r_o

RaT = pog_TATL3 /I_oao

St = AH/%AT

Sc =/_O/PO_c

Pec = UL/ac

Rac = pogflcCoL3 /l_ao

8.5 ,--, 850

72 ,-., 72 x 104

258 (5T)

0.91 ,--, 91

0.107

7.7 ,-, 7.7x 104

3.327

31.56

2.7 ,,_2.7x 104

12 ,,_12 x 104

Table 2 Non-Dimensional parametergroupsand theirtypicalrangesofvalueforverticalBridge

growth ofLTT under the terrestrialand microgravityconditions.The upper limitisforlg and

the lower bound correspondsto i0-4g. The characteristicvelocityused here isbased on the

naturalconvection,i.e.U - _/_TATgL, where AT =Th-T,,_ ,_250°C. The characteristic

lengthisthe radiusofampoule, R - 0.5cm, which isdifferentfrom the definitionused in [19].

Ifthe ampoule length,L - 11cm isused then some of the numbers willhave much higher
values.For instance,RaT willbecome as high as 8.2 x 108.

For heat transport, we have the followingnon-dimensional energy equation

OT* 1

0t--x- + u*. V'T* - PeTV*. [a*(T*)V*T*] (3c)

Here the thermal diffusivity a* (T*) is assumed be a function of temperature and is scaled

by a reference value a0. For constant thermal diffusivity, a* - 1. The dimensionless
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convective heat transfer boundary condition reads

Q* = h_(T* - T:) (13a)

where
t_* 0T*

Q* =
PeT On* '

and the Stefan condition becomes

L T_-To

h;- koPeT' T*- AT (13b)

Q* - Q_ - AH*(u* - u;)- (6b)

where the dimensionless latent heat is given by

AH*= P:. 1 (6c)
Po Ste "

Similarly, we have the following non-dimensional balance equation for concentration

oc iv*. (<v'c) (4b)
0t--7 + u* • V*C = Pec

Note that C is already dimensionless and a* = ac/a ° is the non-dimensional solute dif-

fusivity. If ac --- a ° is a constant, then a* reduces to 1. The mass transfer boundary

condition is transformed to

q* = hmC (14a)

where
a* OC L

q* -- PecOn*' h* = paoPe_ (14b)

and the phase change condition (liquidus) becomes

T* = T* + m*C (5b)

where T* -- (Tin - To)/AT and rn* - re�AT.

3.3 Pseudo-Steady-State Model

To simulate the steady growth of LTT in the vertical and horizontal Bridgman con-

figurations, the so-called pseudo-steady-state model (PSSM) [5,19] is adopted in the present

work. In PSSM, the directional steady movement of the solid/liquid interface during the

steady growth is modeled by letting melt enter at its hot end with a uniform growth ve-

locity Vg and composition Co and by removing the crystal from the cold end at a speed
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that conserves the mass of the alloy in the system. Note that as a simplificationof the

real growth condition the PSSM neglects the transienteffectsin the fieldvariables (such

as velocity,pressure,temperature and concentration, etc.) caused by the steady decrease

of the length of the melt during crystalgrowth and the displacement of the ampoule in

the furnace. This simplificationis valid for long ampoules and melts with low Prandtl

numbers, in which the transient effectson heat transfer are small [40].It is also known

that for sufficientlylong ampoules the thermal end effectsare negligible[41].

Interface

0 I, 0

Liquid

rl_ 7" Z /
, Z Ot

Solid

Z !
0

'r"

oP(z,r)

Z
========_.

(a) time = 0

Figure 2 Definition of the moving coordinate system
relation with a reference frame z_otr t fixed in space.

V#t =at : Yg

(b) time > 0

zor used in the PSSM and its

Perhaps the most important feature of PSSM is the application of the moving coordi-

nate system. In this work, the moving coordinate system is introduced by fixing its origin

at the center of the moving solid/liquid interface. Fig. 2 shows the definition of the moving

coordinate system and its relation with a fixed fxame in space. Let zor denote the moving

coordinate system for the axi-symmetric case and z'dr _ a fixed coordinate system in space,

respectively. We choose the origins of the two systems to coincide at time equals zero, as

depicted in Fig. 2(a). At t > 0, the coordinates of point P in the moving coordinate system

are (r, z) while its coordinates with respect to a stationary observer sitting on the fixed

frame are (r',z'). From Fig. 2(b), it is evident that

r.--r t

(12)
z = z' - Vgt

Here Vg is the growth rate with Vg > 0 corresponding to melting and Vg < 0 to solidification.

The relation of velocity in the two systems can be easily derived by considering the

time derivatives of (12), namely

' (13)'/"=/" =_" Ur = 'Ur
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- ' (14)_ = _' Vg _ u= + Vg = uz

According to (13) the r-components of velocity in the two systems are identical. Since the

s/1 interface becomes stationary in the moving coordinate system, the steady movement

of the interface is now represented by the translation of the moving coordinate system in

an opposite direction to the growth (or melt) direction. The translation of the moving

coordinate system does affect the z-component of velocity. Equation (14) indicates that

although the material particle in the solid is stationary with respect to the fixed coordinate

system, it has a constant translation velocity when viewed from the moving coordinate

system. Consequently, the velocity boundary conditions for uz need to be modified in the

moving coordinate system. Let q3 denote the given velocity on boundary F_ in the fixed

coordinate system, viz.

= (15)

Then the velocity boundary condition in the moving coordinate system becomes

= v (r,z) e (16)

For instance, at the no-slip boundary _ = 0, but under system zor eqn. (16) gives u_ =-Vg,

which is due to the translation of the moving coordinate system.

In order to obtain the transformed governing equations in the moving coordinate sys-

tem, we also need to consider the spatial derivatives. By using the chain-rule, it is easy to

verify the following relation for the first-order spatial derivatives

0 0 Or 0

Or' Or Or' Or
O 00z 0

Oz' Oz Oz' Oz

(17)

And likewise for the second-order derivatives we have

0 2 0 2 0 2 0 2

Oft2 -- oqr2 , COze2 -- 6qz2 (18)

Eqns. (17) and (18) suggest that the spatial derivatives in the governing equations are

unaffected under the coordinate transformation. Applying (12)-(14) and (18) in eqn. (3),

the transient energy equation is now reduced to the following steady state form under the

moving coordinate system

p0%(u + V)- VT = V-(_VT) . (3b)
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Here V is the translation velocity vector of the moving coordinate system.

3.4 Special Treatment for Concentration

The special difficulty in solving mass transfer in phase-change problems is the disconti-

nuity of solute concentration itself across the interface, as indicated by interface condition

(10). Furthermore, the melting temper_ture is no longer a constant, insteacl it has to be

determined by the local solute concentration. However in the standard FEM formulation,

both the trial and test function have to be at least C o continuous and no jump-is allowed for

the primitive variables. Therefore a special treatment is necessary for the species equation.

To eliminate the discontinuity of C at the interface, the following transformation

C* =Cs/k (19)

is performed for concentration in the solid region. The interface condition (10) is then

reduced to

el =c: (20)

and thus C becomes continuous across the phase change interface. It can be proved [30]

that the mass flux balance condition (9) can be rewritten in the following form

(DiVCl - D, VCs) . fi = hcCl (21)

where the coefficient

h_ = p.(1 - k)(u. - uz)-fi + D.(1 - k)fi- VC;ICz. (22)

The second term in (22) involves spatial gradient of concentration at the solid side. Since

the solute diitusivity in solids, i.e. D,, is usually several orders of magnitude smaller than

Dl, it is reasonable to assume this term is negligible. In our computation, the interface

condition (21) is imposed through a species transfer boundary element at the moving

interface.

3.5 Dimensional Units for the Lorentz Force Term

When the dimensional form of the momentum equation is used in the magnetic damp-

ing analysis, it is important to have the units of the Lorentz body force term to be dimen-

sionally consistent with the other terms in the same equation. It is easy to verify that the

other terms in equation (la) have the following general units

Ou force

P0 _- "_ volume (23)
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For the standard international (SI) unit system, allthe units involved in the Lorentz

force term are clearly defined, such as the following defirdtionsfor the magnetic field

strength and the electricalconductivity

N (24)
B N T (Tesla) = A-m

1 A 2 • s
= (25)

a,_ ,._ _2. m N. m 2

where A is electic current in amperes, _ is resistance in ohms and N is force in Newtons.

Note that the following relations: f_ = V/A, V = W/A and W = N. m/s are used in

deriving (25). By using (24) and (25) we can easily confirm the SI units of the Lorentz

force term, i.e.

A 2. s m N (26)
a'_B2U _ N . m 2 _. m s = m--_

which is indeed consistent with general units (23) of the other terms.

However, for the centimeter-gram-second (CGS) unit system, things are not so

straightforward. This is because there are no CGS units commonly used for voltage,

current, etc. In this case, we need to consider the following term

a'_ B2 = araB 2 (27)
Po

where a,_ -- am/po is called the mass diffusivity in FIDAP. Then we introduce the following

result

Proposition: The dimensional unit of(27)/s invariant for both the Sl and the CGS unit systems.

Proof." Substituting the SI units for a,n, P0 and B into (27) gives

a'_ B2 A2 . s m3 (N)2 s . N 1 (28)po ~ : V9

which is the same in the two unit systems.

To confirm the above results, we substitute (28) into the Lorentz force term and obtain

poamB2 U ~ g 1 cm dyne (29)
crn3 s s = cm-'''T

which is exactly the consistent unit for the CGS unit system. Therefore, the above results

suggest that for magnetic damping analysis based on the CGS units, one can use a mixed

units in the Lorentz force term, namely use SI units for the magnetic field related term

(27) while inputing the rest of the quantities in the Lorentz force term with CGS units.

The CGS units of the Lorentz force term will then be consistent with the other terms in

the momentum equation.
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4. NUMERICAL SIMULATION

4.1 The FEM Model

In this paper we consider two Bridgman growth configurations. The first is the bot-

tom seeded (vertical) Bridgman growth. In this configuration the hot (melt) zone is on

the top and the cold (crystal) zone is at the bottom. The furnace axis is parallel to the

gravity vector which is in the vertical direction pointing downwards. For axisynunetric

boundary conditions it is reasonable to assume that the heat, species and flow fields axe all

axisymmetric, i.e. independent of the 0-coordinate. Therefore a simplified axisymmetric

model, as depicted in Fig. 3, is used to model the vertical Bridgman growth. The compu-

tational boundary conditions imposed for the energy, momentum and species equations axe

summarized in Figure 4. For the momentum equation, we specify the no-slip conditions

on the surface between the sample and ampoule wall. For heat transport we impose the

measured thermal conditions on the outer surface of the ampoule. As shown in Fig. 4(b),

the thermal profile on the ampoule surface consists of the hot, adiabatic and cold zones.

The concentration boundary conditions are shown in Fig. 4(c).

IR Z

7-o

Growth Rate Vg _. gravity

Inconel Ampoule

Quartz Ampoule

Liquid PbSnTe Solid

±
0.1

0.1

T
R

±

Figdre 3. Schematic diagram and geometric definitions of a simplified axisymmetric
FEM model for the vertical Bridgman growth configuration.

The second configuration is the horizontal Bridgman in which the gravity vector is

perpendicular to the furnace axis (i.e. the z-axis defined in Fig. 3). In this case the

solutions are assumed to be symmetric about the vertical center plane and an idealized

two-dimensional model is used to simulate this center plane. Although this 2-D model is

just a simplification for the real situation, we hope it can provide at least some qualitative
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Thor

Hot Zone T = Thor

Adiabatic Zone

T = Tcold

---I to t---

Axisymmetrie Line

Stefan Condition
/

_/on = o

(a) Thermal Boundary Conditions

Tcold

ur=O

u,. = 0 and u_ = -Vg

h

Ur "-0

b

u,.=O u_=free 5 2

Co) Velocity Boundary Conditions for Pseudo-Steady State Analysis

C=C0

oc/oR=o

Solute

Interface

Conditions

oc/on=o

(e) Boundary Conditions for Solute Concentration

Figure 4. Computational boundary conditions used for the axisymmetrie model.
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information for this growth configuration. More accurate modeling will rely on the full

three-dimensional model which iscurrently under development.

4.2 The Front Tracking Approach

The most challenging difficulty posed by phase change problems is the moving solid-

liquid interface whose position is usually an unknown function of time and space and needs

to be determined as a part of the solution. In the literature various numerical techniques

have been proposed to deal with the moving interface for phase change problems [42].

Among them, two main classes of methods can be distinguished, namely the fixed-grid

enthalpy methods and the front-tracking methods. The front-tracking technique with

deforming mesh is used in our modeling.

Unlike the enthalpy method, the phase change front tracking method can model the

phase change problems with a sharp (single) solid/liquid interface. The front tracking

approach used in this work involves a deformable spatial mesh in which nodes located on

the interface are allowed to move such that they remain on the moving boundary. For each

node on the moving interface, an additional degree of freedom is introduced. This new

degree of freedom determines directly the position of the node in space and is an integral

part of the representation of the moving interface.

To update the interface position and remesh the interior domains, a method of spines

is used. It is a generalization of the method developed by Saito and Scriven [43], in which

the moving nodes lie on and the interface movement is guided by the generator lines called

spines. In particular, the position of the moving node is represented parametrically by

xi = a_[hj+l + wti(hj - hj+l)] +/3z

=   [hj+1+  t,(hj- + (30)

where hj isthe interfacelocation parameter for a given spine, (c_,c_u,c_) isthe direction

vector, (_y,/3_) is the base point of the spine. The location (xi,yi,zi) of the moving

node on the spine is determined from itsrelativeposition,wti, to the moving interfaces

located at hj and hj+1. Here hj are the new degree of freedom introduced.

For steady state problems, applying Galerkin's formulation and the standard dis-

cretizationprocedure to the momentum equation (1) resultsin a nonlinear algebraicsystem

in the following matrix form [28]

A(U)U + K(T, U)-CP + BX = F (31)
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where X isthe global vector of the moving interfaceunknowns, A(U) accounts for contri-

bution from the convective terms, K(U) includes the diffusiveterms, C isthe divergence

matrix, B represents the contribution of the normal stressbalance condition at boundary,

F isa body force vector.

4.3 The Segregated Solver

System (31) along with the energy equation, species equation and other interface and

boundary conditions are solved by a segregated solution procedure. In contrast to the tra-

ditional fully coupled approach (such as the Newton-type solver), the segregated solution

algorithm does not form the global system matrix directly. Instead, it decomposes the

global system matrix into smaller sub-matrices each governing the nodal unknowns associ-

ated with only one conservation equation. These segregated sub-matrices axe then solved

in a sequential manner. Since the storage of the individual sub-matrices is considerably

less than that needed to store the global system matrix, the storage requirements of the

segregated approach are substantially less than those of the fully coupled approach.

4.4 Numerical Solution

The axisymmetric and 2-D FEM models are built with the 4-node bilinear element,

in which velocity, temperature and species are approximated by bilinear shape functions.

The pressure is approximated as piecewise constant.

In this work numerical solutions axe obtained by using a modified version of the finite

element program FIDAP. The details of the FEM formulation in FIDAP are documented

in [28]. The nonlinear iteration termination is controlled by a specified tolerance of 10 -3

for the relative error norms of velocity, residual and free surface update.

5. BENCHMARK TESTS

Due to the complexity of the crystalgrowth problem considered herewith, there ex-

istsno closed-form (analytical)solution,nor adequate published resultsin the literature.

Therefore, it is necessary to conduct a seriesof benchmark tests to check the validity

of the numerical model and the accuracy of the numerical solutions. In this section we

summarize some of the typical teststhat have been performed. These test problems are

usually simplified so that analytical solutionsare availablefor quantitative comparisons.

Each simple test isaimed to examine only a particularpart of the model.
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5.1 1-D Crystallization of A Biury Alloy

First, we consider the classical 1-D solidification of a binary alloy in a semi-infinitive

region, x > 0. Initially the whole block of molten alloy is in liquid phase with uniform initial

temperature and concentration distributions, To and Co. At t = 0 +, the temperature at

the left end surface, x = 0, is lowered to T1 < Tin. Hence crystallization of the mixture is

initiated at the boundary x = 0. The complete mathematical formulation for this problem

can be found in [44]. The main objective of this test is to verify the formulation and FEM

implementation related with concentration, phase change conditions and front tracking.

Under certain assumptions, such as constant conduction and diffusion coefficients

in each phase, this problem admits a similarity solution which is usually referred to as

Rubinstein solution and has the following general form

s = 2_V/

C, = -k,T,_

T,=TI+(T,_-T1)erf(XV_)/erf (/_ )2a (5.1)

(_D¢)/erfc <--_l )el = Co - (kzT, + Co)erfc 2

T' = T° + (Tm - T°)erfC ( a_v_) /erfc ( _ )2-_t

Here S(t) is the interface position, a is thermal diffusivity, erf is the error function and eric

is the complementary error function. This solution presumes a linearized liquidus and solidus

c, = -k,T_, G = -k_T_ (5.2)

for concentrations at the solid side and the liquid side of the interface, respectively, k, and

kl are the constant slopes of the straight liquidus and solidus lines.

There-are two unknown parameters, namely/_ and T,_, in the above solution. They

need to be determined through the heat and mass flux balance conditions at the interface.

The two interface conditions form a system of two transcendental equations

_.(T,,, - Tx)e-_'/o_. ,_(T.. - To)e-'V4
pAHZ = +

a,v/-_erf(/3/a,) a_v/_erfc(/_lat)

klT_ + Co _S2/ D,
(k. - k, = -V -; )e -"

(5.3)

(5.4)
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It can be proved that there exists a solution for this system. Eqns. (5.3) and (5.4) can be

solved simultaneously or further reduced to a single transcendental equation

which determines/3. Then Tm is given by

+ TllCse-32/a]] erfc (-_tt ) e _2/a_

°

q- V/-'_t kte -132 / Dz -4-

_V/-ffiCoe-/P / D,

T,= = [v_(k, _ kz)/3erfc(/3/v/-D-_) + V/_-ikle__2/D,]

=0

(5.5)

(5.6)

In our test we consider a special case in which the following values are chosen for the

parameters involved, viz.

p= 1, AH=I

tCs -'- tq -- 1

D, = 1, Dt = 1/2

as = at = 1

ks : 1, kl : 2

T0=l, 7'1=-1, C0=0.1.

Substituting (5.7) into (5.5) and (5.6) and solving the nonlinear equations give

(5.7)

fl = 0.3526943389 and Tm= -0.06872222638. (5.8)

Numerical solution isobtained by using FIDAP. Only a finitepart of the semi-infinite

domain, i.e. [0,4],is considered. The boundary conditions imposed for energy equation

are of mixed type with a constant temperature 7'1 =-1 at z=0 and a no-flux (OT/Ox=O)

condition at x = 4. For concentration, the no-flux condition (OC/Ox = 0) is applied to both

end surfaces. To avoid problems associated with initiation at t = 0, numerical solution

begins from t - 0.1 with the initial T and C provided by the similarity solution (5.1).

The backward Euler time integration scheme is used with a time step At = 0.01 and the

solution ends at t = 0.4. Comparisons are made between the numerical solution and the

similarity solution. Some typical results are shown in Fig. 5. As we can see the agreement

is excellent and the error is within l_0.
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Figure 5. Comparison of numerical solution with the similarity solution for the
1-D solidification test problem. The solution shown is calculated at t = 0.4
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52. AM-Symmetric Poiseuille Flow Subject to Buoyancy Force

This simple test is designed for checking the formulation and FEM implementation on

the buoyancy force term in the momentum equation. For simplicity, we assume a constant

change in temperature and concentration which in turn leads to a constant buoyancy body

force

po(1-- _TAT-- /3cAC)g .

Consider a rectangular domain in the axi-symmetric plane with length L and radius

Ro. The boundary conditions for the momentum equation are imposed as

u_ = 0, Ouz/Or = 0 @ r = 0

u_ = 0, az = -Ap, @ z = 0

u_ = 0, Uz = 0, @ r = R0

u_ = 0, az = 0. @ z = L

(5.9)

Furthermore we assume laminar flow and the only non-zero velocity component is uz = u(r).

For this test problem, the analytical solution can be easily derived and uz has the following

form

1[ 0,]u(r) = _ p0(1 - flTAT - flcAC)g - -_z (R_ - r 2) (5.10)

where Op/Oz is the pressure gradient. The following data are used in our test

(5.11)

R0 = 0.5, L = 1.0

p0--2, /z=2

fit = 0.002, /3¢ = --0.1

AT = 100, AC = 1

g = 0.5, Op/Oz = -Z p = -0.8.

The above-data lead to a maximum velocity

Uma x -- ¢t(O) _ 0.053125. (5.12)

The problem is solved by using the bilinear element. To observe the convergence of

numerical solution, we start from a coarse mesh with an element size AXl = 0.1. We

then refine the mesh by dividing the square element by half in both coordinate directions.

Namely, the subsequent meshes have element sizes Ax2 -- AXl/2 and Ax3 = AXl/4. A
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Figure 6. The convergence check for FEM

solution of Umax at r = 0 for the axi-symmetric

Poiseuille flow test problem. The error norm is
hdefinedas I 1--lum where h-- Um_ x

is mesh dependent FEM solution and Umax is

the analytical solution.

verification of the pointwise convergence of um_ is presented in Fig. 6. The slope of the

curve in Fig. 6 indicates a second-order convergence rate for velocity solution, which agrees

well with the FEM theory [45].

5.3 Couette Flow in A Verlical Magnetic Field

This test is designed for validating the formulation related with magnetic damping.

Consider the plate-driven simple shearing flow of a Newtoniem fluid shown in Fig. 7. The

flow is subject to a uniform vertical magnetic field. Assume the electric field is everywhere

equal to zero, the magnetic induction is not distorted by the fluid flow, the magnetic field

is equal to the imposed value and the buoyancy force term is negligible.

L/: h
O :-

J, L _J

Figure ?. Plate-driven Couette flow before being subject to a uniform transverse mag-
netic field. Definition of the problem.
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In this case, the Lorentz body force is simplified to

o',_(u x B) x B = -a,,u, B21 (5.13)

which acts in the opposite direction to the motion of fluid. Therefore the effect of Lorentz

force is to reduce the x-component of velocity. Solving the momentum equation with the

appropriate boundary conditions we obtain the following analytical solution in nondimen-

sional form

s_(Haz)vp, u_=u_ =0 (5.14)
uz = sinh(Hah)

where Ha is the Hartman number.

The effect of magnetic damping can be seen more clearly by a very simple asymptotic

analysis. Consider the limit when Ha becomes very large. It is easy to verify the following

result

lim uz = lJm e--Ha(h--z)vp ---+0 VZ < h (5.15)
ft a--+ oo H a---_ co

which suggests that when the magnetic field is strong enough the velocity can be diminished

everywhere in the domain except on the top plate where the above limit approaches Up,

the moving speed of the plate. Here the effect of the imposed magnetic field is in general

similar to the effect of increasing the viscosity of the melt. However, care must be taken in

making analogy between the so-called "magnetic viscosity" with the real viscosity. In some

aspects, they are quite different. For example, the magnetic viscosity is anisotropic and its

value depends on the magnitude of the effective velocity component, while the viscosity of

a Newtonian liquid is isotropic and independent of velocity.

Due to the continuity of uffi, a boundary layer is formed near the top plate and its

thickness decreases with increase of Ha. This boundary layer is very similar to the so-

called Hartman boundary layer in the solidifying melt analyzed in [19]. Therefore this

test problem can also examine how well the thin boundary layer can be resolved in the

numerical solution.

In our test the following values are selected for the nondimensional parameters involved

in (5.14).

h= 1, Up = 1, Ha = v/2,10,50. (5.16)

The problem is solved by using the 8-node 3-D brick element in FIDAP. A total of three

meshes are used with the element sizes Axl = 1/6, Ax2 = 1/12 and Az3 = 1/24. A typical

posterior error analysis based on the three-mesh extrapolation is provided in Table 3. The
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Location

x--l�6

z=l/3

Ax 1

.122772

Ax 2

.122896

Ax 3

.122927

Ax----0

.122936

.252429 .252659 .252716 .252734

x= 1/2 .396241 .396540 .396614 .396638 .3966391

x=2/3 .562272 .562579 .562656 .562680 .5626810

x--5/6 .759832 .760054 .760109 .760127 .7601279

Analitical

.1229367

.2527349

Table 3 Posterior error analysis on numerical solution of velocity by three-mesh extrapolation

for the magnetic damping Couette flow problem with Ha - v_. Columns Axl, (i -- 1, 2, 3)
are the raw uz results obtained from mesh 1 to mesh 3. The values in column Ax = 0 are

caculated by a quadratic extrapolation. The analytical solution is given by (5.14).

N
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0.8 B

0.6 m

Ha= 10

W

[ ....... Ax = I16

[ • Ax = 1/12b _ Y.xact
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0.8
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0.4 -

0.2 - ,

d

d

J

0.0
-0.25

Ha = 50

----Ax = 1/12
• Ax-- 1124

Exact

0.0 I i I i I _ I ,

-0.25 0.25 0.75 1.25 0.25 0.75

U U
X X

1.2,

Figure 8. Numerical solutions for the magnetic damping test problem at higher
Hartman numbers and comparison with analytical solution.
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results indicate that the FEM solution does indeed converge at the expected second-order

convergence rate with mesh refinement and the extrapolated values are accurate to the

sixth digit.

To illustrate the difficulties involved with the thin boundary layer in the magnetic

damping, we solve the test problem at two higher Hartman numbers and present the results

in Fig. 8. As we can see, at Ha= 10 the coarse mesh is not adequate for providing accurate

results near the top boundary and one mesh refinement is necessary. When Ha = 50,

however, mesh 2 with Ax2 = 1/12 becomes incapable in resolving the thin boundary layer

and causes the typical numerical oscillation near the top plate. In this case a further

mesh refinement is necessary in order to obtain more accurate solution. This example

demonstrates clearly the importance of mesh refinement (or grading) in overcoming the

numerical difficulties rendered in modeling magnetic damping.

0.30

0.28

0.25

0.24

U

0.22

0-20

' I ' I _ I ' I '

Centerline (r--O)

o Surface (r-_.5cm)

An_yti_

Solid

0.18 t I I I I I I I i
-3.5 -2.5 -1.5 -0.5 0.5 1.5

Z (cm)

Figure 9. Numerical solution of the axial solute distribution on the centerline

and surface of the LTT sample and comparison with the 1-D diffusion controlled

growth solution. The FEM results are based on the axi-symmetric model for the

vertical configuration with a constant growth rate Vg = lcm/hour. In order to

display the thin boundary layer, only a portion of the domain is shown.

5.4 Diffusion-Dominated Growth under Og

The last test is a more realistic one and designed for testing the PSSM approach.

In this test we consider the FEM model given in section 4.1 and compute the numerical
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solution for an ideal growth condition with no buoyancy-induced convection. To eliminate

convection, we set gravity equal zero. It is known from theory that the excess solute

rejected at the moving interface will be transported by diffusion only. In this case the

axial solute profile is given by the following 1-D solution [1,2]

C(z) - Co (l + _k ke V'z/D_) Vz<0 (5.17)

where z = 0 is the interface position. The initial concentration of SnTe in PbSnTe is

Co = 0.2%. The results are presented in Fig. 9. As we can see that the simulated solute

boundary layer at 0g is indeed very close to the diffusion-controUed solution, and hence

the validity of our numerical model has been verified.

6. VERTICAL BRIDGMAN GROWTH

Numerical simulation of Bridgman growth system involvesa large number of physical

and geometric parameters and the cost of each computation has forced us to focus on one

set of parameters. The particular set of design parameters has been given in Table I.

The resultspresented in thissection are thereforebased on thisset of parameters and the

thermal profilegiven in Fig. 1,unless otherwise stated.

6.1 Thermal Buoyancy-Induced Convection and Its Effects on Solute Segregation

In order to study the interaction between thermal and solutal gradients, we first

consider the density variation caused by thermal expansion only. In this case the thermal

gradient is the main driving force for the convective flow in the melt. A thermally stable

configuration (with melt on top) is used in the simulation. Here the varying parameter

is the magnitude of gravity ranged from 10-4g to lg, which leads to a span of thermal

I_yleigh number from about 7.7 to 7.7 × 10 4.

The simulated velocity fields at various gravity levels are plotted in Fig. 10a. Note

that the plots shown in Fig. 10a are based on the total velocity given in (14) which includes

a constant translation velocity and the buoyancy-induced convective velocity. At 10-4g

the velocity vectors shown are straight and uniform flowing toward to the interface, which

indicates that the buoyancy-driven convection part of the velocity is negligibly small. At

10-3g the convection starts to increase from the center part of the melt and streamlines

become slightly curved near the interface. However, the convective velocity is still very

small (about 17% of the growth rate as indicated by the value of um_x). At the gravity

level of 10-_g, two flow cells have formed in the melt. The smaller one near the interface is
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10-4g 10-3g 10-2g 10-1g lg

Figure 10b Solute distributions in the melt corresponding to the flow fields shown
in Fig. 10a. The darker grey scale represents higher solute concentration.
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driven by the radial temperature gradient. The vector direction in this smaller cell shows

that the flow adjacent to the interface moves upward at the centerline of the ampoule and

downward along the ampoule wall. The larger cell is driven by the axial thermal gradient

caused by the transition in thermal boundary conditions from the adiabatic to hot zone.

The flow direction in the larger cell is opposite to that in the smaller cell. A third flow cell

is formed at 10-1g and the overall strength of buoyancy-induced convection grows with

the increase of gravity levels. The flow patterns shown in Fig. 10a are in a good qualitative

agreement with that reported in the literature [19,41].

The strength of convection in the melt can be measured by the maximum velocity.

The effect of different gravity levels on the convective strength in the melt can be seen

more clearly from Fig. 11 in which the total maximum velocity Umax versus the magni-

tude of gravity is plotted for the vertical growth configurations. The convective strength

level marked by the horizontal dashed line in Fig. 11 is important, because at this level

the buoyancy-driven convective velocity maximum is the same as the translation velocity

(growth rate). It has been shown that radial segregation is often maximum when the

rate of convection and growth are near equal. Therefore it can be considered as a critical

point for the growth of convective strength in the melt. Let gc denote the gravity level

corresponding to this critical point. For simulated vertical growth with thermal expansion

only, gc _ 5 × 10-4g. When gravity is less than gc the convection is very weak and grows

slowly with increases in g. However, when the gravity level exceeds gc convection grows

concomitantly with g and the effects of gravity on the fluid motion in the melt become

significant.

It is interesting to look at the effects of thermal buoyancy-induced convection on the

solute segregation. There are in general two basic forms of solute segregation, namely

longitudinal (axial) macro segregation caused by complete mixing and transverse (radial)

segregation caused by low levels of mixing near the interface. As analyzed by Brown et

al [19], these two forms of segregation are a function of convection level in the melt. In

our computation the convective strength is directly related to the magnitude of gravity.

As shown in Fig. 10b, at low convective flow levels (such as 10-4g and 10-3g) the radial

segregation is negligibly small and the axial segregation is very close to the diffusion-

dominate growth with a thin solute boundary layer near the interface. At 10-3g the

radial segregation starts to increase and the iso-concentration lines become curved. This

is due to the small convective flow cell formed adjacent to the interface. The excess solute
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Figure U. Effects of gravity on the strength of convection in the melt measured

by the maximum total velocity, Umax, which includes the growth rate Vg and the
buoyancy-driven convective velocity.

rejected st the interface is first swept in a negative radial direction towards the center of

the ampoule and then is carried away from the interface along the axial direction at the

center. However, the rejected solute is only carried a very short distance (about twice the

radius) along the axial direction and cannot go further due to the small size of the flow cell

driven by the local radial thermal gradient. When the convective flow becomes stronger at

high gravity levels, the radial segregation continues to increase but the axial segregation

is still limited within the short range near the interface. Since the rejected solute is only

circulated in the lower flow cell and cannot be passed to the larger upper flow cell, the

axial mixing is incomplete. This suggests that for this particular vertical growth condition

the thermal gradient contributes merely to the low level of mixing near the interface.

6.2 Effectsof Solute VolumeWic Expansion

For non-dilute alloy system, the density variation caused by solute volumetric expan-

sion becomes important. For PbSnTe, scaling analysis shows that the magnitude of/_eA_T

and 3cAC are globally of the same order. Consequently, the solute buoyancy force is of

equal importance as the thermal counterpart. In our modeling, the second set of solutions

considers both the thermal and solute volumetric expansions. The results are presented in

Figs. 11-13.
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I II

III

10-4g 10-3g 10-2g 10-Ig lg

Um_- 1.189% 37.27Vg 145.9Vg 2493Vg 7833Vg

Figure 12a Contours of strea_1 functions for the vertical growth when both the

thermal and solutal buoyancy forces are considered. The flow direction of all the flow
cells, except the top flow cell at 10-2g, is clockwise, i.e. the fluid flow upwards along

the axis and downwards along the wall. Here the calculation of stream function is

based on the total velocity and Vg--2.7781_m/sec.
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lO-4g lO-Sg lO-_g lO-_g Ig

Figure 12b Simulated solute segregation in the melt corresponding to the flow fields
shown in Fig. 12a. The darker grey scale represents higher solute concentration.
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Figure 12c The effect of convective flow on the thermal fieldin the melt for the

vertical growth when both the thermal and solutalbuoyancy forcesare considered.

The values of the isotherm contours are: .4 = 912.0, B - 958.9, C - 1005.8,
D --1052.7 and E-- 1099.7°C.
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The most obvious impact by considering the solute buoyancy force is the changes in

the convective flow pattern and the significant increase in convective strength. Comparison

between Fig. 10a and 12a shows that when the solutal expansion effect is included the flow

field and solute segregation become quite different starting from the gravity level of 10-3g.

In this case the flow pattern in the melt is greatly changed by the interaction between

VT and VC. The axial thermal gradient causes material to rise in the center and flow

down along the wall. This thermal buoyancy induced flow cell (the lower flow cells shown

in Fig. 10a) is strengthened by the axial concentration gradient which forces the rejected

lighter solute to be carried away from the interface along the centerline. As a result a

single large cell is formed at 10-3g. However, the interaction between thermal and solute

gradient is quite complicated. At 10-2g two equal-size flow cells are formed as shown in

Fig. 12a. The upper flow cell is then diminished again at higher gravity levels. When

the solute volumetric expansion is included, the strength of the convective flow (measured

by Um_x) is about one order of magnitude higher than that caused by thermal expansion

only (for gravity levels greater than gc as shown in Fig. 11). The results presented here

demonstrate the significance of the effect of solute volumetric expansion and the interaction

between the solutal and thermal fields for non-dilute alloys.

It is interesting to observe how the convective flow field changes with increase of

gravity levels. At low gravity level, such as 10-3g, the flow cell shown in Fig. 12a indicates

that the flow at the lower part of the ampoule can be divided vertically into two opposite

flow regions, with the division line lies approximately at the middle of the radius, i.e.

r = 0.5R. The central part r < 0.5R is a cylinder with an upward flow, while the outer

annular region 0.5R < r < R has a downward flow. Since the cross-section areas of these

two regions are unequal, the average flow speed on them is different. In order to satisfy

the continuity condition, the flow is faster in the smaller central region than that in the

larger outer annular region. However, with increase of convection strength, the flow cell

is pushed towards to the wall. As we can see from Fig. 12a, the outer annular region

becomes smaller and the division line at lg is much closer to the wall. This results in a

thin boundary layer and a faster flow near the wall at high gravity levels. The thermal

contour plots in Fig. 12c also indicate a thin thermal boundary layer at lg level. These

thin boundary layers render great difficulties for numerical solution, causing slow-down in

convergence or even divergence of the nonlinear iterations. These difficulties occurred in

our computation were also reported in the literature [19].
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The effect Of solute gradient on segregation is also significant. On the interface, the

radial solute gradient acts in an opposite direction to the thermal radial gradient and tends

to reduce the radial segregation. At the center of the sample, however, the axial solute

gradient acts in the same direction as the axial thermal gradient and tends to enhance the

axial segregation. This results in a weaker local radial segregation near the interface and

a much more complete mixing at high gravity levels, as can be seen in Fig. 12b and 13.

In order to describe quantitatively the transition from diffusion-controlled growth

(without bulk convection) to growth with intensive laminar convective mixing, we compute

two conventional segregation parameters. The first is the effective segregation coefficient keff

defined as [19]

ke_ =- k <C>I / <<C>> (6.1)

where < C >r is the lateral average of solute concentration over the solid/liquid interface

and << C >> is the volumetric average of solute concentration in the melt. The second is

the percentage radial segregation AC defined as

AC = [6C[m=/Co (6).)

or

AC = ICtop -Cbottoml/Co • (6.3)

Here [SCImax is the maximum difference in concentration at the interface. For directional

solidification, diffusion-controlled growth with a planar interface leads to uniform solute

distribution in radial direction, thus we have AC = 0. If the melt is sufficiently long that

the diffusion layer near the interface occupies only a small fraction of the total length, kerr

approaches unity when there is no convective flow in the melt other than the unidirectional

growth velocity Vg. The other limit of k_fr represents the steady state well-mixed growth

in which the intense convection leads to a complete mixing in the melt. In this case the

value of kerr approaches k.

The computed segregation coefficients for the vertical growth are plotted as a function

of gravity levels in Fig. 13. Here the quantitative axial and radial segregation analysis is

consistent with the results seen in Fig. 10b and 12b. For thermal buoyancy induced flow

case, the values of k_ are very close to one at all gravity levels, which indicates the

diffusion-dominated growth in axial segregation even though the local radial segregation

may be quite large at high gravity levels as suggested by the values of AC.
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Figure 13. A quantitative description of the effects of gravity on the axial solute segrega-
tion (a) measured in terms of the effective segregation coefficient, kerr and the radial solute

segregation (b). The results are based on the axisymmetric model for the vertical growth and

the values of AC were calculated from the liquid side of the interface. The results labeled
by/_t considers thermal buoyancy force only.
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When both thermal and solute buoyancy forces are considered, the calculated kerr

values in Fig. 13(a) show a diffusion-controlledgrowth at low gravity levels,kerrisvery

close to k at high gravity levelswhich indicatesthat a well-mixed statehas been achieved.

Radial segregation resultsshow that weak convection (in the range 10-Sg to 10-4g) and

strong convection (at lg) both produce low radial segregation, while the intermediate

gravity levelsproduce high radialsegregation. As shown in Fig. 13(b), AC has a local

maximum at 10-ag, which is very close to the gravity levelpredicted by the criticalgc

shown in Fig. 11. The plots of k_r and AC v.s. the magnitude of gravity presented here

agree well with the schematic curves given by Kim, Adornato and Brown in [19].

31.0 ' ' I ' ' I ' '

_.o _ I ........Umx=Vg}

\
-'_ 15.0

Gravity = 10"4g

7.0

....... i

-1.0 , I I i I I i i
_0 3.0 6.0 9.0

B (KG)

Figure 14. Effects of an axially imposed magnetic field on the strength of
convective flow in the melt measured by the maximum total velocity, Umax. The
results are based on the vertical growth model with R -- lcm, Vg = 0.5lzm/sec

and _c -- 0.

6.3Magnetic Damping

The action of an axial magnetic fieldon convection in the melt is to interferewith

the radial velocity component. As pointed out in ref. [19],at large B the magnitude

of the radial velocity decreases proportionally to the square of the strength of magnetic

induction. The axial velocity component is not affected by the magnetic fieldexcept in

the coupling through the incompressibilitycondition. When the magnetic fieldis strong

enough, an almost uniaxial flow (i.e. Uz = Vg, u,. = O) can always be obtained. One of the
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goals of this study is to quantitatively determine the required magnetic field levels at which

the diffusion-controlled growth can be achieved in orbit. In Fig. 14 and 15 we provide a

typical analysis of the effects of magnetic damping for vertical Bridgman at a low gravity

of 10-4g. Note that the results presented in this subsection are based on a larger ampoule

radius R- lcm and a slower growth rate Vg = 0.5pm/sec. With these conditions, 10-Sg

resulted in an almost diffusive growth without magnetic field.

Our numerical results suggest that magnetic damping on the convective flow in the

melt is practically effective for micro-gravity crystal growth. By considering the magnetic

damping as a continuous loading process with the increase of B, the typical Um_ V.S. B

curve given in Fig. 14 shows that there are mainly two stages during the magnetic damping

process. The first is a rapid change stage in which the strength of the convective flow in

the melt is significantly reduced with an increase of magnetic field strength. The second is

a slow (asymptotic) change stage during which the velocity decreases very slowly with an

increase of B. These two stages can be clearly seen in Fig. 14. In this case, over 90% of the

original strength of convection is damped when B is increased from zero to 3000 Gauss.

However it requires another 6000 Gauss to eliminate nearly all of the original velocity

strength.

In Fig. 15 we plot the interface shape, radial and axial solute segregation at several

B levels. Fig. 15(b) shows how magnetic damping affects the radial segregation on the

interface. Here the change of radial segregation with the increase of B is not monotonic,

it is reduced to a local minimum at about B= 1.5KG and then increased again. Fig. 15(c)

and (d) shows the effectiveness of magnetic damping on the axial segregation under the

microgravity condition. At B ,,_ 3KG the axial segregation is very close to a diffusion-

dominated growth state.

At high gravity levels, our results suggest that the axially imposed magnetic field is

not effective for suppressing convective flow in the melt. Fig. 16 shows an example of

magnetic damping for the vertical growth on earth. As we can see that the Um_, is still

about 1000 times higher than Vg at B = 25KG and the decrease of Um_x is much slower

than that at the gravity level of 10-2g. The scaling analysis suggests that the required

magnetic field strength for the terrestrial growth will be much higher than the generally

available 50KG in order to achieve the diffusion-dominated growth condition.
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Figure 15. Numerical solutions of the vertical Bridgman growth with increasing magnetic

field strength measured in kilo-Gauss. (a) Liquid/solid interface shapes; (b) Radial solute

segregation at interface; (c) Axial segregation at the center of ampoule (R -- 0); (d) Axial

segregation on the surface of sample (R = 1.0cm).
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7. HORIZONTAL BRIDGMAN GROWTH

Vertical Bridgman represents an idealized configuration which may only exist on earth.

In space, the situation is quite different. First, it is practically impossible to exactly align

the furnace axis with the residual gravitational vector. Second, any deviation of the furnace

axis from gravity direction will dramatically change the flow field. The results presented

in Fig. 17(a) and (b) suggest that even a 1 ° re_is-alignment at low gravity of 10-4g can

completely distort the axisymmetric flow pattern and increase the strength of convection

by a factor of up to seven in our particular case.

I 1 10-4g

(a) Axi-Symmctric Solution of Vc_ical Bridgman Um_ = 1.17Vg

1 o

10-49

(b)2-D SolutionwithMis-Aligned Gravity Um_ = 8.25Vg

lO-4g

(c)2-D SolutionofHorizontalBridgman Um,._--11.53Vg

10-3g

(d)HorizontalBridgman Um,,x= 106.31Vg

lO-2g

(c)HorizontalBridgman U,.,_= I061.3Vg

Figure 17. Effects of orientation and magnitude of gravity vector on the fluid motion in
the melt of PbSnTe.

To study the effects of the orientation and magnitude of gravity, we present in

Fig. 17(c)-(d) the flow fields in the melt, and in Fig. 18 the interface shape, radial and

axial segregation for horizontal Bridgman growth at four typical gravity levels. Note That
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the solutions presented in this section consider the density variation caused by both the

thermal and solute volumetric expansions.

For horizontal Bridgman, the growth at 10-5g is very close to diffusion-dominated

state as indicated in the axialsegregationplots in Fig. 18(c) and (d).At 10-4g the thermal

buoyancy induced flow cellin the center part rotatesin the same directionas in the vertical

Bridgman configuration. However, the radialsolutesegregation and VC_ are locallystrong

enough to force the rejected solute flow up along the interfaceand form a clockwise flow

cellnear the interface. For a given growth speed Vg, thissolutal buoyancy induced flow

cellexistsonly at low g when the mixing isincomplete and becomes lesspronounced as

gravity increases. When gravity __ 10-2g the small flow cellnear the interfacevanishes

and the thermal convection grows to a larger cell. This strong convection results in a

complete mixing and a much more uniform solute distributionalong both the axial and

radial directions,as can be seen in Fig. 18(b)-(d).

For the horizontal growth, the axialmagnetic fieldislessefficientthan for the vertical

growth. A typical magnetic damping analysis ispresented in Fig. 19. As we can see from

Fig. 19(d), a three Kilo-Gauss fieldcan bring down about 90% of the convection strength

at 10-4g. However, a much higher magnetic field(about 40KG) is required to reach to

the diffusion-dominated growth state.

8. CONCLUSIONS

Since the alignment offurnace axiswith residualgravitationalaccelerationaboard any

orbiter cannot be practicallyguaranteed to within a small fractionof a degree, we should

only resortto examining the resultsobtained from the horizontalBridgman growth models.

Even though the DC accelerationlevelstypicalon the shuttleare <_ 10-59 (depending on

the furnace location relativeto C.G.), we recommend using a worst case scenario in which

the g-vector is perpendicular to the ampoule axis. Furthermore, it has been known that

isolatedlarge amplitude peaks in the order of O(10-3)g are common in space. Therefore,

a conservative estimate at this time can probably be obtained by using the horizontal

Bridgman model with 10-49 DC case. Our resultsshow that a magnetic fieldof few kilo-

Gauss willbe sufficientto substantiallyreduce the effectsof buoyancy-induced convection

on the solute segregation. Investigationof a 10-5g DC case with a time-dependent 10-3g

acceleration pulse willbe pursued later.

Future plans callfor ground work in a magnetic furnace and continued modeling

work on predicting and comparing with experimental data for a systematic examination
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of the phenomena at hand, and for specifying the required magnetic field for microgravity

experiments.
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